## Naphthalene-based polyester polyol





## GX-1536-100 • GX-1544-100

- Polyester polyol with naphthalene rings.
- Under heating conditions, soluble in solvents such as MEK and DMF.
- Used as a raw material for polyurethane resins, it can improve the solvent resistance, abrasion resistance, and PET adhesion of polyurethane resins.

| <b>General properties</b> |       | GX-1536-100                                   | GX-1544-100                                  |  |
|---------------------------|-------|-----------------------------------------------|----------------------------------------------|--|
| OH value (mgKOH/g)        |       | 37                                            | 75                                           |  |
| Acid value (mgKOH/g)      |       | <1.0                                          | <1.0                                         |  |
| Molecular weight (Mn) *1  |       | 3000                                          | 1500                                         |  |
| Hydroxyl functionality    |       | 2                                             | 2                                            |  |
| Appearance                |       | Colorless to yellow transparent solid (Flake) | Colorless to yellow transparent solid (Flake |  |
| Tg                        |       | 61℃                                           | <b>62</b> ℃                                  |  |
| Feature                   |       | Amorphous                                     | Amorphous                                    |  |
| *2 Solvent<br>solubility  | MEK   | 0                                             | 0                                            |  |
|                           | DMF   | 0                                             | 0                                            |  |
|                           | EtOAc | 0                                             | 0                                            |  |
|                           | THF   | 0                                             | 0                                            |  |

<sup>\*\*1</sup> Mn:Calculated from OH value. \*\*2 Solvent solubility:60° C for THF, 70° C for others at 50% solid content.

## Polyurethane polymerization properties / Polyurethane resin properties

Polymerization conditions: Polymerization using TDI(1.1eq) in DMF at 80° C for 6 hours (No catalyst).

| Polyol                      |       | GX-1536-100 | GX-1544-100 | PPG *1 | PTMG *2 |
|-----------------------------|-------|-------------|-------------|--------|---------|
| Polyurethane polymerization | Mw    | 21000       | 37000       | 22000  | 159000  |
|                             | Mn    | 12000       | 15000       | 11000  | 80000   |
| properties                  | Mw/Mn | 1.8         | 2.5         | 2.0    | 2.0     |
|                             |       |             |             |        |         |

|                           |                       |          | GX-1536-100 | GX-1544-100 | PPG *1 | PTMG *2 |
|---------------------------|-----------------------|----------|-------------|-------------|--------|---------|
| Properties of the PU film | Solvent<br>resistance | Methanol | 0           | 0           | ×      | ×       |
|                           |                       | Ethanol  | 0           | 0           | ×      | ×       |
|                           |                       | IPA      | 0           | 0           | ×      | ×       |
|                           |                       | Acetone  | Δ           | Δ           | ×      | ×       |
|                           |                       | MEK      | Δ           | ×           | ×      | ×       |
|                           |                       | EtOAc    | Δ           | Δ           | ×      | ×       |
|                           |                       | Toluene  | 0           | 0           | ×      | ×       |
|                           |                       | Hexane   | 0           | 0           | 0      | 0       |
|                           | Pencil hardness       |          | 2H          | F           | <6B    | <6B     |
|                           | Abrasion resistance   |          | 5           | 4           | 1      | 1       |
|                           | PET adhesion          |          | 0           | 0           | ×      | Δ       |

<sup>\*\*1</sup> PPG:Polypropylene Glycol 1000 (Diol Type, CAS No.: 25322-69-4) \*\*2 PTMG:Poly(tetramethylene ether) Glycol 1000 (CAS No.: 25190-06-1) ·Coating condition(base material:PET film): drying condition 120°C×5 min, dry thickness about 3μm.









<sup>•</sup>Solvent resistance: Appearance change after rubbing (5 round trips) with a cotton swab, soaked in solvents. Results O:no change. A:whitening. X:dissolution

<sup>•</sup>Pencil hardness: Evaluate the surface of the coating film based on the JIS K5600 scratch hardness (pencil method).
•Abrasion resistance: Using a Gakushin-type friction tester, visually inspect the appearance of the coating film after rubbing the surface with copy paper under a load of 500 g for 5 cycles.

5: Little to no change observed on the surface of the coating film.

<sup>3 :</sup> Significant scratches are observed on the majority of the surface of the coating film.

<sup>2 :</sup> Significant scratches are observed on the majority of the surface, with partial delamination of the coating film. 1 : The majority of the surface of the coating film is delaminated. -PET adhesion : Apply Nichiban's self-adhesive cellulose tape to the surface of the coating film, then peel it off sharply and visually inspect the appearance of the coating film.

<sup>○:</sup> No peeling observed on the coating film. △: Peeling is observed in some parts of the coating film, or partial transfer of the coating film is observed on the tape. ×: Peeling is observed on the majority of the coating film, or significant transfer of the coating film is observed on the tape.